EE2003 Circuit Theory

Chapter 2

Basic Laws

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basic Laws - Chapter 2

2.1 Ohm's Law.
2.2 Nodes, Branches, and Loops.
2.3 Kirchhoff's Laws.
2.4 Series Resistors and Voltage Division.
2.5 Parallel Resistors and Current Division.
2.6 Wye-Delta Transformations.

2.1 Ohms Law (1)

- Ohm's law states that the voltage across a resistor is directly proportional to the current I flowing through the resistor.
- Mathematical expression for Ohm's Law is as follows:

$$
V=i R
$$

- Two extreme possible values of R: 0 (zero) and ∞ (infinite) are related with two basic circuit concepts: short circuit and open circuit.

2.1 Ohms Law (2)

- Conductance is the ability of an element to conduct electric current; it is the reciprocal of resistance R and is measured in mhos or siemens.

$$
G=\frac{1}{R}=\frac{i}{v}
$$

- The power dissipated by a resistor:

$$
p=v i=i^{2} R=\frac{v^{2}}{R}
$$

2.2 Nodes, Branches and Loops (1)

- A branch represents a single element such as a voltage source or a resistor.
- A node is the point of connection between two or more branches.
- A loop is any closed path in a circuit.
- A network with b branches, n nodes, and I independent loops will satisfy the fundamental theorem of network topology:

$$
b=l+n-1
$$

2.2 Nodes, Branches and Loops (2)

Example 1

How many branches, nodes and loops are there?

2.2 Nodes, Branches and Loops (3)

Example 2

Should we consider it as one branch or two branches?

How many branches, nodes and loops are there?

2.3 Kirchhoff's Laws (1)

- Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

Mathematically, $\quad \sum_{n=1}^{N} i_{n}=0$

2.3 Kirchhoff's Laws (2)

Example 4

- Determine the current I for the circuit shown in the figure below.

We can consider the whole

$$
\begin{gathered}
I+4-(-3)-2=0 \\
\Rightarrow I=-5 A
\end{gathered}
$$

This indicates that the actual current for I is flowing in the opposite direction. enclosed area as one "node".

2.3 Kirchhoff's Laws (3)

- Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.

Mathematically, $\quad \sum_{m=1}^{M} v_{n}=0$

2.3 Kirchhoff's Laws (4)

Example 5

- Applying the KVL equation for the circuit of the figure below.

$$
\begin{gathered}
\mathbf{v}_{\mathrm{a}}-\mathrm{v}_{\mathbf{1}}-\mathrm{v}_{\mathrm{b}}-\mathrm{v}_{\mathbf{2}}-\mathrm{v}_{\mathbf{3}}=0 \\
\mathbf{v}_{\mathbf{1}}=\left\|\mathbf{R}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}}=\right\| \mathbf{R}_{\mathbf{2}} \mathrm{v}_{\mathbf{3}}=\| \mathbf{R}_{\mathbf{3}} \\
\Rightarrow \mathbf{v}_{\mathrm{a}}-\mathbf{v}_{\mathrm{b}}=\|\left(\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{3}\right) \\
I=\frac{v_{a}-v_{b}}{R_{1}+R_{2}+R_{3}}
\end{gathered}
$$

2.4 Series Resistors and Voltage Division (1)

- Series: Two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current.
- The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances.

$$
R_{e q}=R_{1}+R_{2}+\cdots+R_{N}=\sum_{n=1}^{N} R_{n}
$$

- The voltage divider can be expressed as

$$
v_{n}=\frac{R_{n}}{R_{1}+R_{2}+\cdots+R_{N}} v
$$

2.4 Series Resistors and Voltage Division (1)

Example 3
 are in series

2.5 Parallel Resistors and Current Division (1)

- Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.
- The equivalent resistance of a circuit with N resistors in parallel is:

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}
$$

- The total current i is shared by the resistors in inverse proportion to their resistances. The current divider can be expressed as:

$$
i_{n}=\frac{v}{R_{n}}=\frac{i R_{e q}}{R_{n}}
$$

2.5 Parallel Resistors and Current Division (1)

Example 4

2.6 Wye-Delta Transformations

Delta -> Star
$R_{1}=\frac{R_{b} R_{c}}{\left(R_{a}+R_{b}+R_{c}\right)}$
$R_{2}=\frac{R_{c} R_{a}}{\left(R_{a}+R_{b}+R_{c}\right)}$
$R_{3}=\frac{R_{a} R_{b}}{\left(R_{a}+R_{b}+R_{c}\right)}$

$$
R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}
$$

