EE2003 Circuit Theory

Chapter 2 Basic Laws

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basic Laws - Chapter 2

- 2.1 Ohm's Law.
- 2.2 Nodes, Branches, and Loops.
- 2.3 Kirchhoff's Laws.
- 2.4 Series Resistors and Voltage Division.
- 2.5 Parallel Resistors and Current Division.
- 2.6 Wye-Delta Transformations.

2.1 Ohms Law (1)

- Ohm's law states that the voltage across a resistor is directly proportional to the current I flowing through the resistor.
- Mathematical expression for Ohm's Law is as follows:

v = iR

 Two extreme possible values of R:
O (zero) and ∞ (infinite) are related with two basic circuit concepts: short circuit and open circuit. R

2.1 Ohms Law (2)

 <u>Conductance</u> is the ability of an element to conduct electric current; it is the reciprocal of resistance R and is measured in mhos or siemens.

$$G = \frac{1}{R} = \frac{\iota}{v}$$

The power dissipated by a resistor:

$$p = vi = i^2 R = \frac{v^2}{R}$$

2.2 Nodes, Branches and Loops (1)

- A branch represents a single element such as a voltage source or a resistor.
- A node is the point of connection between two or more branches.
- A loop is any closed path in a circuit.
- A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network topology:

$$b = l + n - 1$$

2.2 Nodes, Branches and Loops (2)

How many branches, nodes and loops are there?

2.2 Nodes, Branches and Loops (3)

Example 2

Should we consider it as one branch or two branches?

How many branches, nodes and loops are there?

2.3 Kirchhoff's Laws (1)

 Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

2.3 Kirchhoff's Laws (2)

Example 4

 Determine the current I for the circuit shown in the figure below.

2.3 Kirchhoff's Laws (3)

 Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.

Mathematically,

$$\sum_{m=1}^{M} v_n = 0$$

2.3 Kirchhoff's Laws (4)

Example 5

Applying the KVL equation for the circuit of the figure below.

 $v_{a} - v_{1} - v_{b} - v_{2} - v_{3} = 0$ $V_{1} = IR_{1} \quad v_{2} = IR_{2} \quad v_{3} = IR_{3}$ $\Rightarrow v_{a} - v_{b} = I(R_{1} + R_{2} + R_{3})$ $I = \frac{v_{a} - v_{b}}{R_{1} + R_{2} + R_{3}}$

2.4 Series Resistors and Voltage Division (1)

 Series: Two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current.

 The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances.

$$R_{eq} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

The voltage divider can be expressed as

$$v_n = \frac{R_n}{R_1 + R_2 + \dots + R_N} v$$

2.4 Series Resistors and Voltage Division (1)

Example 3

2.5 Parallel Resistors and Current Division (1)

 Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.

• The equivalent resistance of a circuit with N resistors in parallel is:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

• The total current i is shared by the resistors in inverse proportion to their resistances. The current divider can be expressed as: $i_n = \frac{v}{R_n} = \frac{iR_{eq}}{R_n}$

2.5 Parallel Resistors and Current Division (1)

Example 4

2.6 Wye-Delta Transformations

17